Collaborative Approaches to Engineer Biology for Cancer Applications

An NCI and NIBIB Partnership

Michelle Berny-Lang, PhD

<u>Center for Strategic Scientific Initiatives</u>

Concept Overview

Promote innovative synthetic biology approaches to challenges across cancer research

- Engineer and cancer researcher partnerships
- Trans-NCI, National Institute of Biomedical Imaging and Bioengineering (NIBIB) collaboration

Acknowledgements

- NIBIB*
 - Jacklyn Ebiasah
 - Dave Rampulla
 - Julia Ringel
 - Bruce Tromberg
- CCT
 - Sonia Jakowlew
- CSSI*
 - Kelly Crotty
 - Tony Dickherber
 - Sean Hanlon
 - Linnia Mayeenuddin
 - Dinah Singer
 - CSSI Staff

- DCB*
 - Jennifer Couch
 - Phil Daschner
 - Kevin Howcroft
 - Shannon Hughes
 - Jerry Li
 - Susan McCarthy
 - Nas Zahir
- DCCPS
 - Roxanne Jensen
- DCP*
 - Sharmistha Ghosh-Janjigian
 - Robert Shoemaker
 - Sudhir Srivastava
 - Asad Umar

- DCTD
 - Min Song
 - Brian Sorg
 - Anthony Welch
 - Jason Yovandich
- SBIR
 - Jian Lou
- NCI OD
 - Ed Harlow
 - Doug Lowy
- BSA Subcommittee
 - Sylvia Plevritis (Chair)
 - James Lacey
 - Robert Schreiber

^{*} Signed on to concept

Opportunities to Engineer Biology for Cancer

- Design, construction, and characterization of improved or novel biological systems using engineering design principles = Synthetic Biology
- Enabled by advances with cell/molecular engineering, computation
- Complement to systems biology
- Transformative potential across cancer biology, prevention, diagnosis, and treatment

Capitalizing on the Opportunity: NCI-NIBIB Collaboration

- NIBIB supporting engineers for technology development
- NCI driving cancer research needs

Research potential at this intersection

Build on NIBIB and other NIH investment

- NIH Synthetic Biology Consortium, annual meeting
 - Cancer challenges amenable to synthetic biology approaches
 - More bridges across communities needed
- ~25 funded NIBIB grants
 - Technology development, variety of biological systems (limited cancer)
 - Projects primed for cancer application

Cancer-ready Technology Examples 1

- Engineering novel delivery systems with synthetic biology
 - R21 NIBIB, Tara Deans, University of Utah
 - Engineered platelets release therapeutic content after receptor activation – lysosomal storage diseases
 - Now engineering platelets to target circulating tumor cells (DP2 NCI, Director's New Innovator Award)

- Synthetic biology-based detection of micronutrients with minimal equipment
 - R01 NIBIB, Mark Styczynski, Georgia Tech
 - Engineered bacteria sense micronutrients and produce colored pigment based on the concentration – general nutrient deficiency

McNerney, M.P. et al. Nat Commun 10, 5514 (2019)

Cancer-ready Technology Examples 2

- CRISPR logic circuits for safer and controllable gene therapies
 - R01 NIBIB, Samira Kiani, University of Pittsburgh
 - Genetic safety switches to modulate gRNA or Cas9 to spatiotemporally control CRISPR – liver injury application

- Recording and in situ readout of cell lineage and transcriptional history
 - R01 NIMH (Director's Transformative Research Award), Long Cai and Michael Elowitz, Cal Tech
 - Genomically integrated memory circuits to track and record single cell lineage – brain development focus

Pineda M. et al. ACS Synth Biol 6, 1614 (2017)

Overall Goal

- Stimulate collaborations between engineers and cancer researchers to expand use of synthetic biology to advance understanding and management of cancer
 - Bring more engineers and novel approaches and technologies to cancer research
 - Cancer research needs drive technology application

Sensor: senses environment, molecules, etc. (e.g., engineered cell-surface receptor)

Processor: receives signal and determines response (e.g., orthogonal intracellular signal transduction)

Actuator: initiates the response (e.g., regulated gene expression and function)

Adapted from Josh Leonard 2019

- Example research directions (technology and cancer research advancement)
 - in situ recording of exposures and genetic changes in pre-cancer and cancer
 - sensitive, minimally invasive biosensors to amplify signals and/or report levels of cancer-related biomarkers
 - targeted, controlled therapeutic delivery or therapeutic action using engineered mammalian cells or microbes

RFA Request

- U01s: requirement for both cancer research/oncology and engineering expertise; multi-PI encouraged
- 4-6 awards (<\$500k direct)
- Connect to NIH Synthetic Biology Consortium & appropriate NCI Networks/Consortia, including meetings
- Engineering Pls in SynBio Technology Development Consortium
- RFA, FY21 set aside request
 - Support emerging, promising area
 - Limited NCI portfolio
 - NCI-convened special review
 - Partnership with NIBIB

Total budget request = \$4.2 M total costs year one

\$3.2 M from NCI and \$1.0 M from NIBIB

(~75% NCI funding and ~25% NIBIB co-funding)

Fit Among Technology Development Examples

Concept Prototyping & Feasibility Demonstration

Advanced
Development towards
Context of Use

Scaling/Optimization within Context of Use

Hardening & Validation

Dissemination

Technology
Development
Pipeline

PHYSICAL SCIENCES-

inONCOLOGY

Bioengineering Research Grants Program

Synthetic Biology for Engineering Applications

NCI-NIBIB
Engineering Biology for
Cancer Applications

Successful Application Features & Evaluation Metrics

Application Success

- Significance of cancer research question & potential of technology
- Expertise: engineering, cancer, mathematical modeling
- Technology feasibility
- Application in mammalian tissue or model system

Program Success

- New collaborations
- Publications, presentations, patents, grants in areas
- Research resources models, protocols, controllable cellular components
- Trained fellows and early-career investigators

RFA Request Summary – Trans-NCI & NIBIB Collaboration

Synthetic biology approaches addressing important cancer research questions

- U01s: requirement for both cancer research/oncology and engineering expertise
- 4-6 awards (<\$500k direct)
- RFA, FY21 set aside request

NCI Supported
NIBIB Supported

Total budget request = \$4.2 M total costs year one \$3.2 M from NCI and \$1.0 M from NIBIB (~75% NCI funding and ~25% NIBIB co-funding)

www.cancer.gov/espanol